For fans of science and true scientists alike, there is a must-read article by William A. Wilson over at First Things, called, "Scientific Regress". To summarize it, science has become like baseball: The balls are juiced, and so are the players.
As the article points out, the amount of scientific progress far outweighs the actual possibility for it:
First articulated by John Ioannidis, a professor at Stanford University’s School of Medicine, this argument proceeds by a simple application of Bayesian statistics. Suppose that there are a hundred and one stones in a certain field. One of them has a diamond inside it, and, luckily, you have a diamond-detecting device that advertises 99 percent accuracy. After an hour or so of moving the device around, examining each stone in turn, suddenly alarms flash and sirens wail while the device is pointed at a promising-looking stone. What is the probability that the stone contains a diamond?
Most would say that if the device advertises 99 percent accuracy, then there is a 99 percent chance that the device is correctly discerning a diamond, and a 1 percent chance that it has given a false positive reading. But consider: Of the one hundred and one stones in the field, only one is truly a diamond. Granted, our machine has a very high probability of correctly declaring it to be a diamond. But there are many more diamond-free stones, and while the machine only has a 1 percent chance of falsely declaring each of them to be a diamond, there are a hundred of them. So if we were to wave the detector over every stone in the field, it would, on average, sound twice—once for the real diamond, and once when a false reading was triggered by a stone. If we know only that the alarm has sounded, these two possibilities are roughly equally probable, giving us an approximately 50 percent chance that the stone really contains a diamond.
This is a simplified version of the argument that Ioannidis applies to the process of science itself. The stones in the field are the set of all possible testable hypotheses, the diamond is a hypothesized connection or effect that happens to be true, and the diamond-detecting device is the scientific method. A tremendous amount depends on the proportion of possible hypotheses which turn out to be true, and on the accuracy with which an experiment can discern truth from falsehood. Ioannidis shows that for a wide variety of scientific settings and fields, the values of these two parameters are not at all favorable.
For instance, consider a team of molecular biologists investigating whether a mutation in one of the countless thousands of human genes is linked to an increased risk of Alzheimer’s. The probability of a randomly selected mutation in a randomly selected gene having precisely that effect is quite low, so just as with the stones in the field, a positive finding is more likely than not to be spurious—unless the experiment is unbelievably successful at sorting the wheat from the chaff. Indeed, Ioannidis finds that in many cases, approaching even 50 percent true positives requires unimaginable accuracy. Hence the eye-catching title of his paper: “Why Most Published Research Findings Are False.”Statistical error is just one example of how scientists get their studies wrong. Read the entire article for other examples.
It has to make you wonder, if the science is "settled" on man-made global warming, how come the side of the Earth facing the sun is always warmer than the other side?
No comments:
Post a Comment